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¢ Computer memory is orgamzed into a hierarchy. At the hxghest level (clos-
est to the processor) are the processor ‘comes one or more
levels of cache, When multiple levels are'used, they are denoted L1,12, etc.
Next comes main memory, which is usually W ‘of dynamic random-
access memory(DRAM) All of these are considered internal to the com-
puter system. The hierarchy continues with external memory, with the next
level typically being a fixed hard disk, and one.or mote levels below that
consisting of removable media such as optwai dmm tape

¢ As one goes down the memory hxcrarchy,mef'mﬂsdgcteamng cost/bit,
increasing capacity, and slower access time. It would-be nke to use only the
fastest memory, but because that is the most expensive memory, we trade off
access time for cost by using more of the slower memory. The design chal-
lenge is to organize the data and programs in memory so that the accessed
memory words are usually in the faster memory,

& In general, it is likely that most future accesses to ‘hain memory by the
processor will be to locations recently accessed. So the cache automatically
retains a copy of some of the recently used words from the DRAM. If the
cache is designed properly, then most of the time the processor will request
memory words that are already in the cache. .

Although seemingly simple in concept, computer memory exhibits perhaps the widest
range of type, technology, organization, performance, and cost of any feature of a com-
puter system. No one technology is optimal in satisfying the memory requirements for
a computer system. As a consequence, the typical computer system is equipped with a
hierarchy of memory subsystems, some internal to the system (directly accessible by
the processor) and some external (accessible by the processor via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6 is
devoted to external memory. To begin, the first section examines key characteristics of
computer memories. The remainder of the chapter examines an essential element of all
modern computer systems: cache memory.

4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify
memory systems according to their key characteristics. The most important of these
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal and external
to the computer. Internal memory is often equated with main memory. But there are
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Table 4.1 Key Characteristics of Computer Memory Systems

other forms of internal memory. The processor requires its own local memory, in the
form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit portion
of the processor may also require its own internal memory. We will defer discussion of
these latter two types of internal memory to later chapters. Cache is another form of
internal memory. External memory consists of peripheral storage devices, such as disk
and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this is
typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths
are 8,16, and 32 bits. External memory capacity is typically expressed in terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit of
transfer is equal to the number of data lines into and out of the memory module.
This may be equal to the word length, but is often larger, such as 64, 128, or 256 bits.
To clarify this point, consider three related concepts for internal memory:

* Word: The “natural” unit of organization of memory. The size of the word is
typically equal to the number of bits used to represent an integer and to the
instruction length. Unfortunately, there are many exceptions. For example,
the CRAY C90 has a 64-bit word length but uses a 46-bit integer representa-
tion. The VAX has a stupendous variety of instruction lengths, expressed as
multiples of bytes, and a word size of 32 bits.

* Addressable units: In some systems, the addressable unit is the word. However,
many systems allow addressing at the byte level. In any case, the relationship
between the length in bits A of an address and the number N of addressable
units is 24 = N.

* Unit of transfer: For main memory, this is the number of bits read out of or
written into memory at a time. The unit of transfer need not equal a word or an
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addressable ypjt. For externa] memory, data are often transferreq in much
larger units thap a word, and these are referred to ag blocks.

Another distinction among memory types is the method of accessing units of
data. These include the following:

* Sequential access: Memory is Organized into ypjts of data, called records.
Access must be Made in a specific linear Sequence. Stored addressing informa-
tion is used to S€parate records anq assist in the retrieval process, A shared
read/write mechanism js used, and this myst be moved from its current location

Chapter 6, are Sequential accegs,
* Direct access: As with sequential access, direct access involves g shared

reach a genera] vicinity plus sequentia] searching, counting, or waiting to
reach the fing] location. Again, access time is variable. Dijsk units, discussed jn

From a user’s point of view, the two most important characteristics of memory
are capacity and Performance, Three performance parameters are yseg:

Or made available for use. For non-random-accegg memory, access time is the
time it takes to position the read-write mechanism at the desired location.
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other forms of internal memory. The processor requires its own local memory, in the
form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit portion
of the processor may also require its own internal memory. We will defer discussion of
these latter two types of internal memory to later chapters. Cache is another form of
internal memory. External memory consists of peripheral storage devices, such as disk
and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this is
typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths
are 8,16, and 32 bits. External memory capacity is typically expressed in terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit of
transfer is equal to the number of data lines into and out of the memory module.
This may be equal to the word length, but is often larger, such as 64, 128, or 256 bits.
To clarify this point, consider three related concepts for internal memory:

* Word: The “natural” unit of organization of memory. The size of the word is
typically equal to the number of bits used to represent an integer and to the
instruction length. Unfortunately, there are many exceptions. For example,
the CRAY C90 has a 64-bit word length but uses a 46-bit integer representa-
tion. The VAX has a stupendous variety of instruction lengths, expressed as
multiples of bytes, and a word size of 32 bits.

¢ Addressable units: In some systems, the addressable unit is the word. However,
many systems allow addressing at the byte level. In any case, the relationship
between the length in bits A of an address and the number N of addressable
units is 24 = N.

* Unit of transfer: For main memory, this is the number of bits read out of or
written into memory at a time. The unit of transfer need not equal a word or an
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addressable unit. For external memory, data are often transferred in much
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of

data. These include the following:

Sequential access: Memory is organized into units of data, called records.
Access must be made in a specific linear sequence. Stored addressing informa-
tion is used to separate records and assist in the retrieval process. A shared
read/write mechanism is used, and this must be moved from its current location
to the desired location, passing and rejecting each intermediate record. Thus,
the time to access an arbitrary record is highly variable. Tape units, discussed in
Chapter 6, are sequential access.

Direct access: As with sequential access, direct access involves a shared
read-write mechanism. However, individual blocks or records have a unique
address based on physical location. Access is accomplished by direct access to
reach a general vicinity plus sequential searching, counting, or waiting to
reach the final location. Again, access time is variable. Disk units, discussed in
Chapter 6, are direct access.

Random access: Each addressable location in memory has a unique, physically
wired-in addressing mechanism. The time to access a given location is indepen-
dent of the sequence of prior accesses and is constant. Thus, any location can be
selected at random and directly addressed and accessed. Main memory and
some cache systems are random access.

Associative: This is a random-access type of memory that enables one to make
a comparison of desired bit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrieved based on a
portion of its contents rather than its address. As with ordinary random-access
memory, each location has its own addressing mechanism, and retrieval time
is constant independent of location or prior access patterns. Cache memories
may employ associative access.

From a user’s point of view, the two most important characteristics of memory

are capacity and performance. Three performance parameters are used:

¢ Access time (latency): For random-access memory, this is the time it takes to

perform a read or write operation, that is, the time from the instant that an
address is presented to the memory to the instant that data have been stored
or made available for use. For non-random-access memory, access time is the
time it takes to position the read—write mechanism at the desired location.

Memory cycle time: This concept is primarily applied to random-access memory
and consists of the access time plus any additional time required before a second
access can commence. This additional time may be required for transients to die
out on signal lines or to regenerate data if they are read destructively. Note that
memory cycle time is concerned with the system bus, not the processor.

Transfer rate: This is the rate at which data can be transferred into or out of
a memory unit. For random-access memory, it is equal to 1/(cycle time).
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For non-random-access memory, the following relationship holds:
N
Ty =T4 + —
N AT R

where

Ty = Average time to read or write N bits
T, = Average access time

N = Number of bits

R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most common
today are semiconductor memory, magnetic surface memory, used for disk and tape,
and optical and magneto-optical.

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or is lost when electrical power is switched
off. In a nonvolatile memory, information once recorded remains without deteriora-
tion until deliberately changed; no electrical power is needed to retain information.
Magnetic-surface memories are nonvolatile. Semiconductor memory may be either
volatile or nonvolatile. Nonerasable memory cannot be altered, except by destroying
the storage unit. Semiconductor memory of this type is known as read-only memory
(ROM). Of necessity, a practical nonerasable memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. By organi-
zation is meant the physical arrangement of bits to form words. The obvious arrange-
ment is not always used, as will be explained presently.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three questions:
How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to keep
up with the processor. That is, as the processor is executing instructions, we would
not want it to have to pause waiting for instructions or operands. The final question
must also be considered. For a practical system, the cost of memory must be reason-
able in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: namely, cost, capacity, and access time. At any given time, a variety of
technologies are used to implement memory systems. Across this spectrum of tech-
nologies, the following relationships hold:

* Faster access time, greater cost per bit
* Greater capacity, smaller cost per bit
¢ Greater capacity, slower access time

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capacity
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is needed and because the cost per bit is low. However, to meet performance
requirement, the designer needs to use expensive, relatively lower-capacity memo-
ries with short access times.

The way out of this dilemma is not to rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 4.1. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit
b. Increasing capacity
¢. Increasing access time

o

. Decreasing frequency of access of the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is item (d):
decreasing frequency of access. We examine this concept in greater detail when we
discuss the cache, later in this chapter, and virtual memory in Chapter 8. A brief
explanation is provided at this point.

Figurc 4.1 The Memory Hierarchy
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Example 41 Suppose that the processor has access to two levels of memory. Level 1
contains 1000 words and has an access time of 0.01 us; level 2 contains 100,000 words
and has an access time of 0.1 us. Assume that if a wérd'to be accessed is in level 1, then
‘the protcessot accesses it directly. If it is in level 2, then the word is first transferred to
level1 and thien accessed by the processor. For simplicity, we ignore the time required for
the processor to determine whether the word is in level 1 or level 2. Figure 4.2 shows the
general shape of the curve that covers this situation. The figure shows the average access
time to a two-level memory as a function of the hit ratio H, where H is defined as the
fraction of all memory accesses that are found in the faster memory (e:g., the cache), T is
the access time to level 1, and T is the access time to level 2.'As can be seen, for high per-
centages of level 1 access, the avefage total access time is much closer to that of level 1
than that of fevel 2.

In our example, suppose 95% of the memory accesses are found in the cache. Then
thcavemﬁxuemmssawordcanbeexprmdas

(&%)ft)m us) + (005)(001;;3 + 01 p.s) = 000§5 + 00055 GOlS,us
Thcaveragcwoessnmelsmuchclosertoomp.sthantoo.im,asd&med.

T + T,

T,

Average access time

T

Fraction of accesses involving only level 1 (hit ratio)

Figure 4.2 Performance of a Simple Two-Level Memory

1If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the
accessed word is not found in the faster memory.
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The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENNG68]. During the course of execution of a program, memory ref-
erences by the processor, for both instructions and data, tend to cluster. Pro-
grams typically contain a number of iterative loops and subroutines. Once a loop
or subroutine is entered, there are repeated references to a small set of instruc-
tions. Similarly, operations on tables and arrays involve access to a clustered set
of data words. Over a long period of time, the clusters in use change, but over a
short period of time, the processor is primarily working with fixed clusters of
memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than
that of the level above. Consider the two-level example already presented. Let
level 2 memory contain all program instructions and data. The current clusters can
be temporarily placed in level 1. From time to time, one of the clusters in level 1
will have to be swapped back to level 2 to make room for a new cluster coming in
to level 1. On average, however, most references will be to instructions and data
contained in leve] 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Skipping down two levels, main memory is the principal inter-
nal memory system of the computer. Each location in main memory has a unique
address. Main memory is usually extended with a higher-speed, smaller cache. The
cache is not usually visible to the programmer or, indeed, to the processor. It is a
device for staging the movement of data between main memory and processor reg-
isters to improve performance.

The three forms of memory just described are, typically, volatile and
employ semiconductor technology. The use of three levels exploits the fact that
semiconductor memory comes in a variety of types, which differ in speed and
cost. Data are stored more permanently on external mass storage devices, of
which the most common are hard disk and removable media, such as removable
magnetic disk, tape, and optical storage. External, nonvolatile memory is also
referred to as secondary or auxiliary memory. These are used to store program
and data files and are usually visible to the programmer only in terms of files
and records, as opposed to individual bytes or words. Disk is also used to provide
an extension to main memory known as virtual memory, which is discussed in
Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large
IBM mainframes include a form of internal memory known as Expanded Storage.
This uses a semiconductor technology that is slower and less expensive than that of
main memory. Strictly speaking, this memory does not fit into the hierarchy but is a
side branch: data can be moved between main memory and expanded storage but
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not between expanded storage and external memory. Other forms of secondary
memory include optical and magneto-optical disks. Finally, additional levels can be
effectively added to the hierarchy in software. A portion of main memory can be
used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache,? improves performance in two ways:

» Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

* Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data is retrieved rapidly from the software
cache rather than slowly from the disk.

Appendix 4A examines the performance implications of multilevel memory
structures.

4.2 CACHE MEMORY PRINCIPLES

Cache memory is intended to give memory speed approaching that of the fastest mem-
ories available, and at the same time provide a large memory size at the price of less ex-
pensive types of semiconductor memories. The concept is illustrated in Figure 4.3. There
is a relatively large and slow main memory together with a smaller, faster cache memo-
ry. The cache contains a copy of portions of main memory. When the processor attempts
to read a word of memory, a check is made to determine if the word is in the cache. If so,
the word is delivered to the processor. If not, a block of main memory, consisting of
some fixed number of words, is read into the cache and then the word is delivered to the
processor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that there will be
future references to that same memory location or to other words in the block.

Figure 4.4 depicts the structure of a cache/main-memory system. Main
memory consists of up to 2" addressable words, with each word having a unique

Block transfer

Word transfer

Figure 4.3 Cache and Main Memory

2Djsk cache is generally a purely software technique and is not examined in this book. See [STALOS] for
a discussion.
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Line Memory
number Tag Block address
0 0
1 1
2 2 Block
3 (K words)
«
c-1
Block length
(K Words) .
(a) Cache : :
Block
2" —1
Word
-~ length
(b) Main memory

Figure 44 Cache/Main Memory Structure

n-bit address. For mapping purposes, this memory is considered to consist of a
number of fixed-length blocks of K words each. That is, there are M = 2"/K
blocks. The cache consists of C lines. Each line contains K words, plus a tag of
a few bits; the number of words in the line is referred to as the line size. The num-
ber of lines is considerably less than the number of main memory blocks
(C << M). At any time, some subset of the blocks of memory resides in lines in
the cache. If a word in a block of memory is read, that block is transferred to one
of the lines of the cache. Because there are more blocks than lines, an individual
line cannot be uniquely and permanently dedicated to a particular block. Thus,
each line includes a tag that identifies which particular block is currently being
stored. The tag is usually a portion of the main memory address, as described
later in this section.

Figure 4.5 illustrates the read operation. The processor generates the address,
RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache, and
the word is delivered to the processor. Figure 4.5 shows these last two operations
occurring in parallel and reflects the organization shown in Figure 4.6, which is typ-
ical of contemporary cache organizations. In this organization, the cache connects
to the processor via data, control, and address lines. The data and address lines also
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RAfomCPU

Is block —\ No * Access main
containing RA - - memory for block
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in cache?

Fetch RA word . ~ Allocate cache
and deliver  line for main
“wCPU 2 memory block

A

Deliver RA word

to CPU

Figure 4.5 Cache Read Operation

attach to data and address buffers, which attach to a system bus from which main
memory is reached. When a cache hit occurs, the data and address buffers are
disabled and communication is only between processor and cache, with no system
bus traffic. When a cache miss occurs, the desired address is loaded onto the system
bus and the data are returned through the data buffer to both the cache and the
processor. In other organizations, the cache is physically interposed between the
processor and the main memory for all data, address, and control lines. In this latter
case, for a cache miss, the desired word is first read into the cache and then trans-
ferred from cache to processor.

A discussion of the performance parameters related to cache use is contained
in‘Appendix 4A.
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Figure 4.6 Typical Cache Organization

4.3 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some typ-
ical results. We occasionally refer to the use of caches in high-performance comput-
ing (HPC). HPC deals with supercomputers and supercomputer software, especially
for scientific applications that involve large amounts of data, vector and matrix com-
putation, and the use of parallel algorithms. Cache design for HPC is quite different
than for other hardware platforms and applications. Indeed, many researchers have
found that HPC applications perform poorly on computer architectures that employ
caches [BAIL93]. Other researchers have since shown that a cache hierarchy can be
useful in improving performance if the application software is tuned to exploit the
cache [WANG99, PRES01].3

Although there are a large number of cache implementations, there are a few
basic design elements that serve to classify and differentiate cache architectures.
Table 4.2 lists key elements.

Cache Size

The first element, cache size, has already been discussed. We would like the size of
the cache to be small enough so that the overall average cost per bit is close to that
of main memory alone and large enough so that the overall average access time is

*For a general discussion of HPC, see [DOWD9YS].
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Table 4.2 Elements of Cache Design

Mapping Function Write through
Direct Write back
Associative Write once
Set Asociative Line Size

Replacement Algorithm Number of caches

 Least receatly used (LRU) ~ Single or two level

_ Firstinfirtout (FIFO)  Unified orsplit,
Leastﬁ'eqmﬁymed(LFU) : i
Random :

close to that of the cache alone. There are several other motivations for minimizing
cache size. The larger the cache, the larger the number of gates involved in address-
ing the cache. The result is that large caches tend to be slightly slower than small
ones—even when built with the same integrated circuit technology and put in the
same place on chip and circuit board. The available chip and board area also limits
cache size. Because the performance of the cache is very sensitive to the nature of
the workload, it is impossible to arrive at a single “optimum” cache size. Table 4.3
lists the cache sizes of some current and past processors.

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is need-
ed for mapping main memory blocks into cache lines. Further, a means is needed for
determining which main memory block currently occupies a cache line. The choice
of the mapping function dictates how the cache is organized. Three techniques can
be used: direct, associative, and set associative. We examine each of these in turn. In
each case, we look at the general structure and then a specific example.

MM Fmaﬂthteeem&cexamlc includes the followmg elements:

» The cache can hold 64 KBytes.

¢ Data are transferred between main memory and the cache in blocks of
4 bytes each. This means that the cache is organized as 16K = 2" lines of
.4 bytes each.
‘The main memory consists of 16 Mbytes, with each byte directly addressable by a
. 24-bit address (22 = 16M). Thus, for mapping purposes, we can consider main
memory to consist of 4M blocks of 4 bytes each.
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Table 4.3 Cache Sizes of Some Processors

Processor Type Yesr of M
IBM 360/85 Mainframe
PDP-11/70 ~Minicomputer
VAX 117780 Minicomputer
IBM 3033 Mainframe
IBM 3090 Mainframe
Intel 80486 PC
Pentium . PC
PowerPC 601 PC
PowerPC 620 PC
PowerPCﬁ4 fon PClserver. ...
IBMSA3%G4 | . Mainframe
IBM S/390 G6 Mainframe
Pentium 4  PClserver

-High-end server/ ;
BMS | oo | A0
CRAYVITA" | Sapersompiter | 2000
Itanium PClserver - 2001
SGI Origin 2001 | High-end server - 2001
Itanium 2 PClserver 2002 ,
IBMPOWERS | Highendserver |~ 208
CRAY XD-1 Supercomputer 2004 ... 64KB/64KB

? Two values seperated by a slash refer to instruction and data caches
® Both caches are instruction only; no data caches

Direct Mapping The simplest technique, known as direct mapping, maps each
block of main memory into only one possible cache line. Figure 4.7 illustrates the
general mechanism. The mapping is expressed as
i = jmodulo m
where
i = cache line number

j = main memory block number
m = number of lines in the cache

The mapping function is easily implemented using the address. For purpos-
es of cache access, each main memory address can be viewed as consisting of
three fields. The least significant w bits identify a unique word or byte within a
block of main memory; in most contemporary machines, the address is at the byte
level. The remaining s bits specify one of the 2* blocks of main memory. The cache
logic interprets these s bits as a tag of s — r bits (most significant portion) and a
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line field of r bits. This latter field identifies one of the m = 2" lines of the cache.
To summarize,

* Address length = (s + w) bits

¢ Number of addressable units = 2°** words or bytes

¢ Block size = line size = 2% words or bytes

stw

2'!1/'

* Number of blocks in main memory = =2°

* Number of lines in cache = m = 2
» Size of tag = (s — r) bits

The effect of this mapping is that blocks of main memory are assigned to lines
of the cache as follows:

Cache line Main memory blocks assigned

0 o,m2m,....,2° —m

1 Ilm+1.2m+1,...,2°—-—m+ 1
m—1 m-12m-13m-1,...,2° -1

Thus, the use of a portion of the address as a line number provides a unique
mapping of each block of main memory into the cache. When a block is actually
read into its assigned line, it is necessary to tag the data to distinguish it from other
blocks that can fit into that line. The most significant s — r bits serve this purpose.

‘the cache to access a p
_currently storediin

*In this and subsequent figures, address and memory values are represented in hexadecimal nota-
tion. See Appendix A for a basic refresher on number systems (decimal, binary, hexadecimal).
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“four vym i that Imc Otkerwme ‘the 22-bit tag*plus-lmc field is used to fetch a block
from main memory. The actual address that is used for the fetch is the 22-bit tag-
plus-line concatenated with two 0 b:ts, so: that four bytes-are fetched startmg on a
block boundary. T e

R

Line +
Tag word Data

0000| 13579246 -----5
0004 !
]
i
I
|
|
FFF8 '
FFFC :
R ' Line
R ' Tag Data number
0000 | 77777777 fem oo 00 | 13579246 | 0000
000%\ 11235813,:_-—_----—-_-: 16 11235813A 0001
16 339C | FEDCBA98 [--===-====—== 16 | FEDCBA98 | OCE7
pmmmmm e FF | 11223344 | 3FFE
FFFC| 12345678 |—---- A REEEL TR 16 | 12345678 | 3FFF
* : -
¢ ' 8 bits 32 bits
0000 * : 16-Kline cache
0004 :
i
i
|
: i
FFF8 | 11223344 f------
FFFC| 24682468
-
32 bits
16-MByte main memory
Tag Line Word
Main memory address = 8 14 ‘ 2J

Figure 4.8 Direct Mapping Example



4.3 / ELEMENTS OF CACHE DESIGN 117

The direct mapping technique is simple and inexpensive to implement.
Its main disadvantage is that there is a fixed cache location for any given block.
Thus, if a program happens to reference words repeatedly from two
different blocks that map into the same line, then the blocks will be continually
swapped in the cache, and the hit ratio will be low (a phenomenon known as
thrashing).

Associative Mapping Associative mapping overcomes the disadvantage of
direct mapping by permitting each main memory block to be loaded into any line
of the cache. In this case, the cache control logic interprets a memory address
simply as a tag and a word field. The tag field uniquely identifies a block of main
memory. To determine whether a block is in the cache, the cache control logic
must simultaneously examine every line’s tag for a match. Figure 4.9 illustrates
the logic. Note that no field in the address corresponds to line number, so that
the number of lines in the cache is not determined by the address format. To
summarize,

* Address length = (s + w) bits
* Number of addressable units = 25" words or bytes
* Block size = line size = 2 words or bytes

s+w

2’117
* Number of lines in cache = undetermined

* Number of blocks in main memory = =27

* Size of tag = s bits

Example 4.2b Figure 4.10 shows our example using associative mapping. A main
memory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must
be stored with the 32-bit block of data for each line in the cache. Note that it is the
leftmost (most significant) 22 bits of the address that form the tag.’ Thus, the 24-bit
hexadecimal address 16339C has the 22-bit tag 058CE7. This is easily seen in binary
notation: .

memory address 0001 0110 0011 0011 1001 1100 (binary)
1 6 3 3 9 C  (hex)

tag (leftmost 22 bits) 0 0101 1000 1100 1110 0111 (binary)
0 5 8 C E 7 (hex)

*In Figure 4.10, the 22-bit tag is represented by a 6-digit hexadecimal number. The most significant
hexadecimal digit in fact is only 2 bits in length.
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Address Data
000000 | 13579246 [~~~ 1
000004 !
]
I
~. ~_ :
i
|
[
]
!
1
|
: Line
: Tag Data number
i 7~ 3FFFFE [ 11223344 | 0000
7=—1--71---| 058CE7 | FEDCBA98 | 0001
Th [ | |
163398 N
16339C | FEDCBAS8 | --' { Lo~ ~_
163340 I |
~ ~
~ ™ __t__l__|3FFFFD| 33333333 | 3FFD
L __r__4000000| 13579246 | 3FFE
-}t ___| 3FFFFF 24682468 3FFF

. >
- - :

22 bits 32 bits

16-Kline cache

FFFFF4 | 33333333 |--

FFFFF8 | 11223344 |—---- N
FFFFFC | 24682468 ---—-- |
>
32 bits

16-MByte main memory

Tag Word

Main memory address = 22 I 2 I

Figure 4.10 Associative Mapping Example

With associative mapping, there is flexibility as to which block to replace when a
new block is read into the cache. Replacement algorithms, discussed later in this section,
are designed to maximize the hit ratio. The principal disadvantage of associative map-
ping is the complex circuitry required to examine the tags of all cache lines in parallel.

‘Set Associative Mapping Set associative mapping is a compromise that
exhibits the strengths of both the direct and associative approaches while reducing
their disadvantages. In this case, the cache is divided into v sets, each of which con-
sists of k lines. The relationships are
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m=vpy Xk

~
I

J modulo v
where

i = cache set number
_j = main memory block number
m = number of lines in the cache

This is referred to as k-way set associative mapping. With set associative mapping,
block B; can be mapped into any of the lines of set i. In this case, the cache control
logic interprets a memory address simply as three fields: tag, set,and word. The d set
bits specify one of v = 27 sets. The s bits of the tag and set fields specify one of the
2° blocks of main memory. Figure 4.11 illustrates the cache control logic. With fully
associative mapping, the tag in a memory address is quite large and must be com-
pared to the tag of every line in the cache. With k-way set associative mapping, the
tag in a memory address is much smaller and is only compared to the k tags within a
single set. To summarize,

¢ Address length = (s + w) bits

* Number of addressable units = 2°** words or bytes

* Block size = line size = 2" words or bytes
2S+1l’

¢ Number of blocks in main memory S =2°

* Number of lines in set = k

* Number of sets = p = 2¢

* Number of lines in cache = kv = k x 24
* Size of tag = (s — d) bits

Example 4.2c  Figure 4.12 shows our example using set associative mapping with two
lines in each set, referred to as two-way set associative.® The 13-bit set number identi-
fies a unique set of two lines within the cache. It also gives the number of the block in
main memory, modulo 2. This determines the mapping of blocks into lines. Thus,
blocks 000000, 008000, . . . , FF8000 of main memory map into cache set 0. Any of
those blocks can be loaded into either of the two lines in the set. Note that no two
blocks that map into the same cache set have the same tag number. For a read opera-
tion, the 13-bit set number is used to determine which set of two lines is to be exam-
ined. Both lines in the set are examined for a match with the tag number of the address
to be accessed. '

®In Figure 4.12, the 9-bit tag is represented by a 3-digit hexadecimal number. The most significant
hexadecimal digit in fact is only 1 bit in length. The 15-bit set plus word portion of the main memory
address is represented in the figure by a 4-digit hexadecimal number. The most significant digit is only
3 bits in length.
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Tag  Set + word Data
0000 13579246 [~~~ 1
0004 :
i
I
000 T ~ I
|
I
|
TFF8 :
7FFC "
" R e
. I : Set X
. : : Tag Data number Tag Data [
0000 77777777 F--' === 0004} 13579246 0000 [02c| 77777777 --
0004 | 11235813 [~~~ "77"7"777 02C| 11235813 0001
’\v Av N— "‘v T ’Nv
02C 339C FEDCBA98 [—-———~——-—————— -4 02C| FEDCBA98 O0CE7
r——— 1FF| 11223344 1FFE
JFFC | 12345678 p—-———-—-- L--402c| 12345678 | 1FFF | 1FF 24682468 | -,
. 1 > - P - > ,
. : 9 bits 32 bits 9 bits 32 bits |
. | |
0000 : 16-Kline cache ‘,
0004 | :
l
! |
I
1FF T~ *~ | !
| :
' 1
| ‘
7FF8 | 11223344 | - ___ ; :
TJFFC | 24682468 | -—— - e m e
>
32 bits
16-MByte main memory
Tag Set Word
Main memory address = 9 l 13 I 2 l

Figure 4.12 Two-Way Set Associative Mapping Example

In the extreme case of
direct mapping, and for v =

V:
1,k

m, k = 1, the set associative technique reduces to
= m, it reduces to associative mapping. The use of

two lines per set (v = m/2, k = 2) is the most common set associative organization.
It significantly improves the hit ratio over direct mapping. Four-way set associative
(v = m/4, k = 4) makes a modest additional improvement for a relatively small
additional cost [MAY B84, HILL89]. Further increases in the number of lines per set
have little effect.
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Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one
of the existing blocks must be replaced. For direct mapping, there is only one pos-
sible line for any particular block, and no choice is possible. For the associative
and set associative techniques, a replacement algorithm is needed. To achieve
high speed, such an algorithm must be implemented in hardware. A number of al-
gorithms have been tried: we mention four of the most common. Probably the
most effective is least recently used (LRU): Replace that block in the set that has
been in the cache longest with no reference to it. For two-way set associative, this
is easily implemented. Each line includes a USE bit. When a line is referenced, its
USE bit is set to 1 and the USE bit of the other line in that set is set to 0. When a
block is to be read into the set, the line whose USE bit is 0 is used. Because we
are assuming that more recently used memory locations are more likely to be ref-
erenced, LRU should give the best hit ratio. Another possibility is first-in-first-
out (FIFO): Replace that block in the set that has been in the cache longest.
FIFO is easily implemented as a round-robin or circular buffer technique. Still
another possibility is least frequently used (LFU): replace that block in the set
that has experienced the fewest references. LFU could be implemented by asso-
ciating a counter with each line. A technique not based on usage is to pick a line
at random from among the candidate lines. Simulation studies have shown that
random replacement provides only slightly inferior performance to an algorithm
based on usage [SMITS82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases
to consider. If the old block in the cache has not been altered, then it may be over-
written with a new block without first writing out the old block. If at least one
write operation has been performed on a word in that line of the cache, then main
memory must be updated by writing the line of cache out to the block of memory
before bringing in the new block. A variety of write policies, with performance and
economic trade-offs, is possible. There are two problems to contend with. First, more
than one device may have access to main memory. For example, an I/O module may
be able to read/write directly to memory. If a word has been altered only in the
cache, then the corresponding memory word is invalid. Further, if the I/O device
has altered main memory, then the cache word is invalid. A more complex problem
occurs when multiple processors are attached to the same bus and each processor
has its own local cache. Then, if a word is altered in one cache, it could conceivably
invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all
write operations are made to main memory as well as to the cache, ensuring that
main memory is always valid. Any other processor-cache module can monitor
traffic to main memory to maintain consistency within its own cache. The main
disadvantage of this technique is that it generates substantial memory traffic
and may create a bottleneck. An alternative technique, known as write back,
minimizes memory writes. With write back, updates are made only in the cache.
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When an update occurs, an UPDATE bit associated with the line is set.
Then, when a block is replaced, it is written back to main memory if and only if
the UPDATE bit is set. The problem with write back is that portions of main
memory are invalid, and hence accesses by /0O modules can be allowed only
through the cache. This makes for complex circuitry and a potential bottleneck.
Experience has shown that the percentage of memory references that are writes
is on the order of 15% [SMIT82]. However, for HPC applications, this number
may approach 33% (vector-vector multiplication) and can go as high as 50%
(matrix transposition).

Elmple 43 Consider a cache with a line size of 32 bytes and a main memory that
requires 30 os to transfer a 4-byte word. For any line that is written at least once before
bemg swapped out of the cache, what is the average number of times that the line must be
written before being swapped out for a write-back cache to be more efficient that a write-
through cache? -

" For the write-back case, each dirty line is written back once, at swap-out time,
taking 8 X 30 = 240 ns. For the write-through case, each update of the line
requires that one word be written out to main memory, tacking 30 ns. Therefore, if the
average line that gets written at least once gets written more than 8 times before swap
-out, then write back is more efficient. :

In a bus organization in which more than one device (typically a processor)
has a cache and main memory is shared, a new problem is introduced. If data in
one cache are altered, this invalidates not only the corresponding word in main
memory, but also that same word in other caches (if any other cache happens to
have that same word). Even if a write-through policy is used, the other caches
may contain invalid data. A system that prevents this problem is said to maintain
cache coherency. Possible approaches to cache coherency include

e Bus watching with write through: Each cache controller monitors the
address lines to detect write operations to memory by other bus masters. If
another master writes to a location in shared memory that also resides in
the cache memory, the cache controller invalidates that cache entry. This
strategy depends on the use of a write-through policy by all cache
controllers.

» Hardware transparency: Additional hardware is used to ensure that all
updates to main memory via cache are reflected in all caches. Thus, if one
processor modifies a word in its cache, this update is written to main
memory. In addition, any matching words in other caches are similarly
updated.

» Noncacheable memory: only more than one processor shares a portion of
main memory, and this is designated as noncacheable. In such a system, all
accesses to shared memory are cache misses, because the shared memory is
never copied into the cache. The noncacheable memory can be identified using
chip-select logic or high-address bits.
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Cache coherency is an active field of research. This topic is explored further in
Chapter 18.

Line Size

Another design element is the line size. When a block of data is retrieved and
placed in the cache, not only the desired word but also some number of adjacent
words are retrieved. As the block size increases from very small to larger sizes,
the hit ratio will at first increase because of the principle of locality, which states
that data in the vicinity of a referenced word are likely to be referenced in the
near future. As the block size increases, more useful data are brought into the
cache. The hit ratio will begin to decrease, however, as the block becomes even
bigger and the probability of using the newly fetched information becomes less
than the probability of reusing the information that has to be replaced. Two
specific effects come into play:

* Larger blocks reduce the number of blocks that fit into a cache. Because each
block fetch overwrites older cache contents, a small number of blocks results
in data being overwritten shortly after they are fetched.

* As a block becomes larger, each additional word is farther from the requested
word, therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on the
locality characteristics of a particular program, and no definitive optimum value has
been found. A size of from 8 to 64 bytes seems reasonably close to optimum
[SMIT87, PRZY88, PRZY90, HANDYS]. For HPC systems, 64- and 128-byte cache
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache.
More recently, the use of multiple caches has become the norm. Two aspects of this
design issue concern the number of levels of caches and the use of unified versus
split caches.

Multilevel Caches As logic density has increased, it has become possible to have
a cache on the same chip as the processor: the on-chip cache. Compared with
a cache reachable via an external bus, the on-chip cache reduces the processor’s
external bus activity and therefore speeds up execution times and increases overall
system performance. When the requested instruction or data is found in the on-chip
cache, the bus access is eliminated. Because of the short data paths internal to the
processor, compared with bus lengths, on-chip cache accesses will complete appre-
ciably faster than would even zero-wait state bus cycles. Furthermore, during this
period the bus is free to support other transfers.

The inclusion of an on-chip cache leaves open the question of whether an off-
chip, or external, cache is still desirable. Typically, the answer is yes, and most con-
temporary designs include both on-chip and external caches. The simplest such
organization is known as a two-level cache, with the internal cache designated as
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level 1 (L1) and the external cache designated as level 2 (1.2). The reason for
including an L2 cache is the following. If there is no L2 cache and the processor
makes an access request for a memory location not in the L1 cache, then the proces-
sor must access DRAM or ROM memory across the bus. Due to the typically slow
bus speed and slow memory access time, this results in poor performance. On the
other hand, if an L2 SRAM (static RAM) cache is used, then frequently the missing
information can be quickly retrieved. If the SRAM is fast enough to match the bus
speed, then the data can be accessed using a zero-wait state transaction, the fastest
type of bus transfer.

Two features of contemporary cache design for multilevel caches are noteworthy.
First, for an off-chip L2 cache, many designs do not use the system bus as the path
for transfer between the L2 cache and the processor, but use a separate data path, so
as to reduce the burden on the system bus. Second, with the continued shrinkage of
processor components, a number of processors now incorporate the L2 cache on the
processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates in
both the L1 and L2 caches. Several studies have shown that, in general, the use of
a second-level cache does improve performance (e.g., see [AZIM92], [NOVI93],
[HANDY8]). However, the use of multilevel caches does complicate all of the design
issues related to caches, including size, replacement algorithm, and write policy; see
[HAND98] and [PEIR99] for discussions.

With the increasing availability of on-chip area available for cache, most con-
temporary microprocessors have moved the L2 cache onto the processor chip and
added an L3 cache. Originally, the L3 cache was accessible over the external bus.
More recently, most microprocessors have incorporated an on-chip L3 cache. In ei-
ther case, there appears to be a performance advantage to adding the third level
(e.g.,see [GHAI98]).

Unified versus Split Caches When the on-chip cache first made an appearance,
many of the designs consisted of a single cache used to store references to both data
and instructions. More recently, it has become common to split the cache into two:
one dedicated to instructions and one dedicated to data.

There are two potential advantages of a unified cache:

* For a given cache size, a unified cache has a higher hit rate than split caches be-
cause it balances the load between instruction and data fetches automatically.
That is, if an execution pattern involves many more instruction fetches than data
fetches, then the cache will tend to fill up with instructions, and if an execution
pattern involves relatively more data fetches, the opposite will occur.

¢ Only one cache needs to be designed and implemented.

Despite these advantages, the trend is toward split caches, particularly for
superscalar machines such as the Pentium and PowerPC, which emphasize parallel
instruction execution and the prefetching of predicted future instructions. The key
advantage of the split cache design is that it eliminates contention for the cache
between the instruction fetch/decode unit and the execution unit. This is important
in any design that relies on the pipelining of instructions. Typically, the processor will
fetch instructions ahead of time and fill a buffer, or pipeline, with instructions to be
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executed. Suppose now that we have a unified instruction/data cache. When the
execution unit performs a memory access to load and store data, the request is sub-
mitted to the unified eache. If, at the same time, the instruction prefetcher issues a
read request to the cache for an instruction, that request will be temporarily blocked
so that the cache can service the execution unit first, enabling it to complete the
currently executing instruction. This cache contention can degrade performance by
interfering with efficient use of the instruction pipeline. The split cache structure
overcomes this difficulty.

PENTIUM 4 AND POWERPC CACHE ORGANIZATIONS

Pentium 4 Cache Organization

The evolution of cache organization is seen clearly in the evolution of Intel
microprocessors (Table 4.4). The 80386 does not include an on-chip cache. The 80486
includes a single on-chip cache of 8 KBytes, using a line size of 16 bytes and a four-way

Table 4.4 Intel Cache Evolution

Problem Solution feature first appears
External memeory slower than the system Add external cache using 386
bus. faster memory technology.
Increased processor speed results in Move external cache on-chip, 486
external bus becoming a bottleneck for operating at the same speed :
cache access; as the processor. .
Internal cache is rather small, due to Add external L2 cache using 486
limited space on chip . faster technology than B
. main memory ;
Contention occurs when both the Create separate data and Pentium
Instruction Prefetcher and the Execution instruction caches. .
Unit simultaneously require access to the
cache. In that case, the Prefetcher is stalled
while the Execution Unit’s data access
takes place. .
Create separate back-side bus Pentium Pro
that runs at higher speed than
Increased processor speed results in the main (front-side) external bus, ;
external bus becoming a bottleneck for L2 The BSB is dedicated to the
cache access. L2 cache.
Move L2 cache on to the ~ Pentium I
processor chip. : b
Some applications deal with massive Add external L3 cache. " Pentium III
databases and must have rapid access ; .
to large amounts of data. The on-chip Move L3 cache on-chip. Pentium 4
caches are too small.
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set associative organization. All of the Pentium processors include two on-chip L1
caches, one for data and one for instructions. For the Pentium 4, the L1 data cache is 8
KBytes, using a line size of 64 bytes and a four-way set associative organization. The
Pentium 4 instruction cache is described subsequently The Pentium II also includes an
L2 cache that feeds both of the L1 caches. The L2 cache is eight-way set associative
with a size of 256K B and a line size of 128 bytes. An L3 cache was added for the Pen-
tium 111 and became on-chip with high-end versions of the Pentium 4.

Figure 4.13 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches. The processor core consists of four major
components:

*» Fetch/decode unit: Fetches program instructions in order from the L2 cache,
decodes these into a series of micro-operations, and stores the results in the L1
instruction cache.

* Qut-of-order execution logic: Schedules execution of the micro-operations
subject to data dependencies and resource availability; thus, micro-operations
may be scheduled for execution in a different order than they were fetched
from the instruction stream. As time permits, this unit schedules speculative
execution of micro-operations that may be required in the future.

» Execution units: These units executes micro-operations, fetching the required
data from the L1 data cache and temporarily storing results in registers.

¢ Memory subsystem: This unit includes the L2 and L3 caches and the system
bus, which is used to access main memory when the L1 and L2 caches have a
cache miss, and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most
other processors, the Pentium 4 instruction cache sits between the instruction de-
code logic and the execution core. The reasoning behind this design decision is as
follows. As discussed more fully in Chapter 14, the Pentium process decodes, or
translates, Pentium machine instructions into simple RISC-like instructions called
micro-operations. The use of simple, fixed-length micro-operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance.
However, the Pentium machine instructions are cumbersome to decode; they have a
variable number of bytes and many different options. It turns out that performance
is enhanced if this decoding is done independently of the scheduling and pipelining
logic. We return to this topic in Chapter 14.

The data cache employs a write-back policy: data are written to main mem-
ory only when they are removed from the cache and there has been an update.
The Pentium 4 processor can be dynamically configured to support write-through
caching.

The L1 data cache is controlled by two bits in one of the control registers,
labeled the CD (cache disable) and NW (not write-through) bits (Table 4.5).
There are also two Pentium 4 instructions that can be used to control the data
cache: INVD invalidates (flushes) the internal cache memory and signals the
external cache (if any) to invalidate. WBINVD writes back and invalidates inter-
nal cache, then writes back and invalidates external cache.

Both the L2 and L3 caches are 8-way set-associative with a line size of 128 bytes.
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Table 4.5 Pentium 4 Cache Operating Modes

ControlBits | Operating Mode
CcD NW. L Cache Fills Write Throughs Invalidates
.0 0 Enabled Enabled Enabled
1 0 Disabled Enabled Enabled
"1 | Disabled ; Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

PowerPC Cache Organization

The PowerPC cache organization has evolved with the overall architecture of the
PowerPC family, reflecting the relentless pursuit of performance that is the driving
force for all microprocessor designers.

Table 4.6 shows this evolution. The original model, the 601, includes a single
code/data 32-KByte cache that is eight-way set associative. The 603 employs a more
sophisticated RISC design but has a smaller cache: 16 KBytes divided into separate
instruction and data caches, both using two-way set associative organization. The
result is that the 603 gives approximately the same performance as the 601 at lower
cost. The 604 and 620 each doubled the size of the caches from the preceding model.
The G3 and G4 models have the same size L1 caches as the 620. The G5 provides 32
KB for the instruction cache and 64 KB for the data cache.

Figure 4.14 provides a simplified view of the PowerPC G5 organization, high-
lighting the placement of the two caches. The core execution group includes two
integer arithmetic and logic units, which can execute in parallel, and two floating-
point units with their own registers and each with its own multiply, add, and divide
components. The instruction cache, which is read-only, feeds into an instruction unit,
whose operation is discussed in Chapter 14.

The L1 caches are eight-way set associative. The L2 cache is a two-way set
associative cache with 256K, 512K, or IMB of memory. As of this writing, the G5
supports an external L3 cache of up to 1 MB, but an on-chip L3 cache is scheduled
for later high-end G5 implementations.

Table 4.6 PowerPC Internal L1 Caches

Model Size Bytes/Line Organization
MPC 603 132-Kbyte 32 8-way set associative
PowerPC 603 2 8-Kbyte R 2-way set associative
PowerPC 604 2 16-Kbyte 32 4-way set associative
PowerPC620 232-Kbyte 64 8-way set associative
PowerPC G3 232-Kbyte 64 8-way set associative
PowerPCG4 2 32-Kbyte 32 8-way set associative
PuwerPC GS 132-Kbyte, 32 8-way set associative

~ ‘ 1 64-Kbyte
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Figure 4.14 PowerPC G5 Block Diagram

4.5 RECOMMENDED READING :

A thorough treatment of cache design is to be found in [HAND98]. A discussion of
Pentium 4 cache organization can be found in [HINTO1]. A classic paper that is still well
worth reading is [SMIT82]: it surveys the various elements of cache design and presents
the results of an extensive set of analyses. Another interesting classic is [WILK®65], which
1s probably the first paper to introduce the concept of the cache. [GOOD83] also provides
a useful analysis of cache behavior. Another worthwhile analysis is [BELL74]. [AGARS9]
presents a detailed examination of a variety of cache design issues related to multipro-
gramming and multiprocessing. [HIGB90] provides a set of simple formulas that can be
used to estimate cache performance as a function of various cache parameters.

AGARB9 Agarwal, A. Analysts of Cache Performance for Operating Systems and Multi-
programming. Boston: Kluwer Academic Publishers, 1989.
BELL74 Bell, I; Casasent, D.; and Bell, C. “An Investigation into Alternative Cache Orgamza

tions.” IEEE Transactions on Computers, April 1974. http://research.anicrosoft.com/
users/GBelVgbvita.htm,
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GOODS83 Goodman, J. “Using Cache Memory to Reduce Processor-Memory Band-
HAND9Y8 Handy, J. The Cache Memory Book. San Diego: Academic Press, 1993.

HIGB90 Higbie, L. “Quick and Easy Cache Performance Analysis.” Computer Architec-
HINTO1 Hinton, G., et al. “The Microarchitecture of the Pentium 4 Processor.” Intel Technol-

SMITS2 Smith, A. “Cache Memories.” ACM Computing Surveys, September 1992.
WILKGS Wilkes, M. “Slave memories and dynamic storage-allocation,” I[EEFE Transactions

width.” Proceedings, 10th Annual International Symposium on Computer Architec-
ture, 1983. Reprinted in {HILLOO).

ture News, June 1990.

ogy Journal, Q1 2001. http://developer.intel.com/technology/itj/

on Electronic Computers, April 1965. Reprinted in [HILLO0O0].

4.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
access time . hit ratio set-associative mapping
associative mapping instruction cache spatial locality
cache hit L1 cache split cache
cache line L2 cache tag )
cache memory L3 cache temporal locality
cache miss locality - : unified cache
cache set memory hierarchy write back
data cache multilevel cache write once
direct access random access write through
direct mapping replacement algorithm
high-performance computing | sequential access

Review Questions

4.1

4.2
43
44

4.5

4.6

4.7

4.8
4.9

What are the differences among sequential access, direct access, and random
access?

What is the general relationship among access time, memory cost, and capacity?
How does the principle of locality relate to the use of multiple memory levels?

What are the differences among direct mapping, associative mapping, and set-
associative mapping?

For a direct-mapped cache, a main memory address is viewed as consisting of three
fields. List and define the three fields.

For an associative cache, a main memory.address is viewed as consisting of two fields.
List and define the two fields.

For a set-associative cache, a main memory address is viewed as consisting of three
fields. List and define the three fields.

What is the distinction between spatial locality and temporal locality?
In general, what are the strategies for exploiting spatial locality and temporal locality?
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Problems

4.1

4.2

43

44

4.6

4.6

4.8

4.9

A set associative cache consists of 64 lines, or slots, divided into four-line sets. Main mem-
ory contains 4K blocks of 128 words each. Show the format of main memory addresses.

A two-way set associative cache has lines of 16 bytes and a total size of 8 kbytes. The
64-Mbyte main memory is byte-addressable. Show the format of main memory addresses.

For the hexadecimal main memory addresses 111111, 666666, BBBBBB, show the fol-

lowing information, in hexadecimal format:

a. Tag, Line, and Word values for a direct-mapped cache, using the format of Figure 4.8.

b. Tag and Word values for an associative cache, using the format of Figure 4.10.

c¢. Tag, Set, and Word values for a two-way set associative cache, using the format of
Figure 4.12.

List the following values:

a. For the direct cache example of Figure 4.8: address length, number of address-
able units, block size, number of blocks in main memory, number of lines in
cache, size of tag.

b. For the associative cache example of Figure 4.10: address length, number of ad-
dressable units, block size, number of blocks in main memory, number of lines in
cache, size of tag.

c. For the two-way set associative cache example of Figure 4.12: address length,
number of addressable units, block size, number of blocks in main memory, num-
ber of lines in set, number of sets, number of lines in cache, size of tag.

Constder a 32-bit microprocessor that has an on-chip 16-KByte four-way set-associa-

tive cache. Assume that the cache has a line size of four 32-bit words. Draw a block di-

agram of this cache showing its organization and how the different address fields are

used to determine a cache hit/miss. Where in the cache is the word from memory lo-
cation ABCDESF8 mapped?

Given the following specifications for an external cache memory: four-way set associative;
line size of two 16-bit words; able to accommodate a total of 4K 32-bit words from main
memory: used with a 16-bit processor that issues 24-bit addresses. Design the cache struc-
ture with all pertinent information and show how it interprets the processor’s addresses.

The Intel 80486 has an on-chip, unified cache. It contains 8 KBytes and has a four-way
set associative organization and a block length of four 32-bit words. The cache is
organized into 128 sets. There is a single “line valid bit” and three bits, B0, B1, and B2
(the “LRU” bits), per line. On a cache miss, the 80486 reads a 16-byte line from main
memory in a bus memory read burst. Draw a simplified diagram of the cache and
show how the different fields of the address are interpreted.

Consider a machine with a byte addressable main memory of 2! bytes and block
size of 8 bytes. Assume that a direct mapped cache consisting of 32 lines is used with
this machine.
a. How is a 16-bit memory address divided into tag, line number, and byte number?
b. Into what line would bytes with each of the following addresses be stored?
0001 0001 0001 1011
1100 0011 0011 0100
1101 0000 0001 1101
1010 1010 1010 1010
¢. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What
are the addresses of the other bytes stored along with it?
d. How many total bytes of memory can be stored in the cache?
e. Why is the tag also stored in the cache?
For its on-chip cache, the Intel 80486 uses a replacement algorithm referred to as
pseudo least recently used. Associated with each of the 128 sets of four lines (labeled
L0, L1, L2. L3) are three bits B0, B1, and B2. The replacement algorithm works as
follows: When a line must be replaced, the cache will first determine whether the
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4.10

4.11

4.12

All four lines in No Replace
the set valid? nonvalid line
Yes l
B0 = 0?

Yes, LO or L1
least recently used

No, L2 or L3
least recently used

B1 =0? B2=0?

Replace Replace Replace Replace
L0 L1 L2 L3

Figure 4.15 Intel 80486 On-Chip Cache Replacement Strategy

most recent use was from LO and L1 or L2 and L3. Then the cache will determine

which of the pair of blocks was least recently used and mark it for replacement.

Figure 4.15 illustrates the logic.

a. Specify how the bits BO, B1, and B2 are set and then describe in words how they
are used in the replacement algorithm depicted in Figure 4.15.

b. Show that the 80486 algorithm approximates a true LRU algorithm. Hint: consid-
er the case in which the most recent order of usage is L0, L2, L3, L1.

¢. Demonstrate that a true LRU algorithm would require 6 bits per set.

A set associative cache has a block size of four 16-bit words and a set size of 2. The
cache can accommodate a total of 4048 words. The main memory size that is
cacheable is 64K X 32 bits. Design the cache structure and show how the processor’s
addresses are interpreted.

Consider a memory system that uses a 32-bit address to address at the byte level, plus

a cache that uses a 64-byte line size.

a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the
address format and determine the following parameters: number of addressable
units, number of blocks in main memory, number of lines in cache, size of tag.

b. Assume an associative cache. Show the address format and determine the follow-
ing parameters: number of addressable units, number of blocks in main memory,
number of lines in cache, size of tag.

¢. Assume a 4-way set associative cache with a tag field in the address of 9 bits. Show
the address format and determine the following parameters: number of address-
able units, number of blocks in main memory, number of lines in set, number of
sets in cache, number of lines in cache, size of tag.

Consider a computer with the following characteristics: total of 1Mbyte of main mem-

ory; the word size is one byte; block size of 16 bytes; and cache size of 64Kbytes.

a. For the main memory addresses of F0010, 01234, and CABBE, give the corre-
sponding tag, cache line address, and word offsets for a direct-mapped cache.

b. Give any two main memory addresses with different tags that map to the same
cache slot for a direct-mapped cache.

¢. For the main memory addresses of FO010 and CABBE, give the corresponding
tag and offset values for a fully-associative cache.

d. For the main memory addresses of FO010 and CABBE, give the corresponding
tag, cache set, and offset values for a two-way set associative cache.

Describe a simple technique for implementing an LRU replacement algorithm in a
four-way set associative cache.



4.14

4.15

4.16
4.17

4.18

4.19

4.20

4.6/ KEY TERMS, REVIEW QUESTIONS. AND PROBLEMS 135

Consider again Example 4.3. How does the answer change if the main memory uses a
block transfer capability that has a first-word access time of 30 ns and an access time
of 5 ns for each word thereafter?

Consider the following code:

for (i = 0;i < 20;i++)
for (j = 0,j < 10;j++)
ali] = ai]'}

a. Give one example of the spatial locality in the code.

b. Give one example of the temporal locality in the code.

Generalize Equations (4.1) and (4.2), in Appendix 4A, to N-level memory hierarchies.

A computer system contains a main memory of 32K 16-bit words. It also has a 4K-

word cache divided into four-line sets with 64 words per line. Assume that the cache is

initially empty. The processor fetches words from location s 0,1,2,..., 4351 in that
order. It then repeats this fetch sequence nine more times, The cache is 10 times faster
than main memory. Estimate the improvement resulting from the use of the cache.

Assume an LRU policy for block replacement.

Consider a cache of 4 lines of 16 bytes each. Main memory is divided into blocks of

16 bytes each. That is, block 0 has bytes with addresses 0 through 15, and so on. Now

consider a program that accesses memory in the following sequence of addresses:

Once: 63 through 70

Loop ten times: 15 through 32; 80 through 95

a. Suppose the cache is organized as direct mapped. Memory blocks 0, 4, etc. are as-
signed to line 1; blocks 1,5, etc. to line 2: and so on. Compute the hit ratio.

b.  Suppose the cache is organized as 2-way set associative, with 2 sets of 2 lines each.
Even-numbered blocks are assigned to set 0 and odd-numbered blocks are as-
signed to set 1. Compute the hit ratio for the two-way set associative cache using
the Least Recently Used replacement scheme.

Consider a memory system with the following parameters:

T. = 100 ns C. = 107 $/bit
T,, = 1200 ns C,, = 1075 $/bit

|

a. What is the cost of 1 MByte of main memory?

b. What is the cost of 1 MByte of main memory using cache memory technology?

¢. If the effective access time is 10% greater than the cache access time, what is the
hit ratio H?

a. Consider an L1 cache with an access time of 1 ns and a hit ratio of H = 0.95. Sup-
pose that we can change the cache design (size of cache, cache organization) such
that we increase H to 0.97, but increase access time to 1.5 ns. What conditions
must be met for this change to result in improved performance?

b. Explain why this result makes intuitive sense.

Consider a single-level cache with an access time of 2.5 ns, a line size of 64 bytes, and a hit

ratioof H = 0.95. Main memory uses a block transfer capability that has a first-word (4

bytes) access time of 50 ns and an access time of 5 ns for each word thereafter.

a. What is the access time when there is a cache miss? Assume that the cache waits
until the line has been fetched from main memory and then re-executes for a hit.

b. Suppose that increasing the line size to 128 bytes increases the H to 0.97. Does this
reduce the average memory access time?

A computer has a cache, main memory, and a disk used for virtual memory. If a

referenced word is in the cache, 20 ns are required to access it. If it is in main

memory but not in the cache, 60 ns are needed to load it into the cache, and then
the reference is started again. If the word is not in main memory, 12 ms are
required to fetch the word from disk, followed by 60 ns to copy it to the cache, and
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4.24

4.26

4.27

4.28

4.29

then the reference is started again. The cache hit ratio is 0.9 and the main memo-

ry hit ratio is 0.6. What is the average time in ns required to access a referenced

word on this system?

Consider a cache with a line size of 64 bytes. Assume that on average 30% of the lines

in the cache are dirty. A word consists of 8 bytes.

a. Assume there is a 3% miss rate (0.97 hit ratio). Compute the amount of main
memory traffic, in terms of bytes per instruction for both write-through and write-
back policies. Memory is read into cache one line at a time. However, for write
back, a single word can be written from cache to main memory.

b. Repeat part a for a5% rate.

¢. Repeat part a for a 7% rate.

d. What conclusion can you draw from these results?

On the Motorola 68020 microprocessor, a cache access takes two clock cycles. Data

access from main memory over the bus to the processor takes three clock cycles

even in the case of no wait state insertion; the data are delivered to the processor in

parallel with delivery to the cache.

a. Calculate the effective length of a memory cycle given a hit ratio of 0.9 and a
clocking rate of 16.67 MHz.

b. Repeat the calculations assuming insertion of two wait states of one cycle each
per memory cycle. What conclusion can you draw from the results?

Assume a processor having a memory cycle time of 300 ns and an instruction process-

ing rate of 1 MIPS. On average, each instruction requires one bus memory cycle for

instruction fetch and one for the operand it involves.

a. Calculate the utilization of the bus by the processor.

b. Suppose the processor is equipped with an instruction cache and the associated
hit ratio is 0.5. Determine the impact on bus utilization.

The performance of a single-level cache system for a read operation can be charac-
terized by the following equation:

T,=T.+(1- H)T,

Where T, is the average access time, T, is the cache access time, 7, is the memory ac-

cess time (memory to processor register), and H is the hit ratio. For simplicity, we as-

sume that the word in question is loaded into the cache in parallel with the load to

processor register. This is the same form as Equation (4.1).

a. Define T, = time to transfer a line between cache and main memory, and
W = fraction of write references. Revise the preceding equation to account for
writes as well as reads, using a write-through policy.

h. Define W, as the probability that a line in the cache has been altered. Provide an
equation for T, for the write-back policy.

For a system with two levels of cache, define T, = first-level cache access time;

T., = second-level cache access time; 7,, = memory access time; H, = first-level

cache hit ratio; H, = combined first/second level cache hit ratio. Provide an equation

for T, for a read operation.

Assume the following performance characteristics on a cache read miss: 1 clock cycle

to send an address to main memory and 4 clock cycles to access a 32-bit word from

main memory and transfer it to the processor and cache.

a. If the cache line size is one word, what is the miss penalty (i.e., additional time
required for a read in the event of a read miss)?

b. What is the miss penalty if the cache line size is 4 words and a multiple, nonburst
transfer is executed?

c. What is the miss penalty if the cache line size is 4 words and a transfer is executed,
with one clock cycle per word transfer?

For the cache design of the preceding problem, suppose that increasing the line size
from one word to four words results in a decrease of the read miss rate from 3.2% to
1.1%. For both the nonburst transfer and the burst transfer case, what is the average
miss penalty, averaged over all reads, for the two different line sizes?
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APPENDIX 4A PERFORMANCE CHARACTERISTICS

OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance
over a comparable one-level memory.

The main memery cache mechanism is part of the computer architecture, im-
plemented in hardware and typically invisible to the operating system. There are
two other instances of a two-level memory approach that also exploit locality and
that are, at least partially, implemented in the operating system: virtual memory and
the disk cache (Table 4.7). Virtual memory is explored in Chapter 8; disk cache is be-
yond the scope of this book but is examined in [STALOS5]. In this appendix, we look
at some of the performance characteristics of two-level memories that are common
to all three approaches.

Locality

The basis for the performance advantage of a two-level memory is a principle
known as locality of reference [DENNG68]. This principle states that memory refer-
ences tend to cluster. Over a long period of time, the clusters in use change, but over
a short period of time, the processor is primarily working with fixed clusters of
memory references.

From an intuitive point of view, the principle of locality makes sense. Con-
sider the following line of reasoning:

1. Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

- Itis rare to have a long uninterrupted sequence of procedure calls followed
by the corresponding sequence of returns. Rather, a program remains con-
fined to a rather narrow window of procedure-invocation depth. Thus, over a
short period of time references to instructions tend to be localized to a few
procedures.

~

Table 4.7 Characteristics of Two-Level Memories

Main Memory Cache  Virtual Memory (Paging) . . Disk Cache
Typical access time ratios 5:1 10%:1 k 10%:1
Memory management Implemented by special Combination of hardware
system ] hardware and system software System software
Typical block size 4 to 128 bytes 64 to 4096 bytes - 64 to 4096 bytes
Access of processor to Direct access Indirect access ' Indirect access
second level '
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Table 4.8 Relative Dynamic Frequency of High-Level Language Operations
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3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference
to point 1, a variety of studies have analyzed the behavior of high-level language
programs. Table 4.8 includes key results, measuring the appearance of
various statement types during execution, from the following studies. The earliest
study of programming language behavior, performed by Knuth [KNUT71},
examined a collection of FORTRAN programs used as student exercises. Tanen-
baum [TANE78] published measurements collected from over 300 procedures
used in operating-system programs and written in a language that supports
structured programming (SAL). Patterson and Sequein [PATT82a} analyzed a
set of measurements taken from compilers and programs for typesetting,
computer-aided design (CAD), sorting, and file comparison. The programming
languages C and Pascal were studied. Huck [HUCKS83] analyzed four programs
intended to represent a mix of general-purpose scientific computing, including
fast Fourier transform and the integration of systems of differential equations.
There is good agreement in the results of this mixture of languages and
applications that branching and call instructions represent only a fraction of
statements executed during the lifetime of a program. Thus, these studies confirm
assertion 1.

With respect to assertion 2, studies reported in [PATT85a] provide confirma-
tion. This is illustrated in Figure 4.16, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain with-
in a stationary window for long periods of time. A study by the same analysts of C
and Pascal programs showed that a window of depth 8 will need to shift only on less
than 1% of the calls or returns [TAMIS83].
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Figure 4.16 Example Call-Return Behavior of a Program

The principle of locality of reference continues to be validated in more recent
studies. For example, Figure 4.17 illustrates the results of a study of Web page access
patterns at a single site.

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to ac-
cess instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
tion and data values in cache memory and by exploiting a cache hierarchy. Spatial
locality is generally exploited by using larger cache blocks and by incorporating
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Figure 4.17 Locality of Reference for Web Pages [BAEN97]
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prefetching mechanisms (fetching items of anticipated use) into the cache control
logic. Recently, there has been considerable research on refining these techniques to
achieve greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of ac-
cesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory, but also the probability that a given reference can
be found in M1. We have

T,=HXT, + (1 - H)X (T, + T))

=TT+ (1 -H)XT, (4.1)
where
T, = average (system) access time
T; = access time of M1 (e.g., cache, disk cache)
T, = access time of M2 (e.g., main memory, disk)
H = hit ratio (fraction of time reference is found in M1)

Figure 4.2 shows average access time as a function of hit ratio. As can be seen,
for a high percentage of hits, the average total access time is much closer to that of
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level
memory mechanism. First consider cost. We have

_GS + 68,

where

C, = average cost per bit for the combined two-level memory
C, = average cost per bit of upper-level memory M1

C, = average cost per bit of lower-level memory M2

= size of M1

size of M2

We would like C; ~ C,. Given that C; >> C,, thisrequires S| << S,. Figure 4.18
shows the relationship.

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have T, approximately equal to 7; (7, = T;).
Given that 7; is much less than 7, (T} << T5), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both

nn
[Nt
I



APPENDIX 4A 141

(C/Cy) = 1000

S 100 4
< 8
Z ¢
5 5]
=t 4
o

£ 34
L

g 24 (C//C) = 100
% 10 o
~ 8

(C1/C2) =10

T T T T T T T T T T LA A
5 6 7 89 2 3 4 s 6 789 2 3 4 5 6 789
10 100 1

Relative size of two levels (S,/S))

Figure 4.18  Relationship of Average Memory Cost to Relative Memory Size for a Two-Level Memory

requirements to a reasonable extent? We can answer this question with a series of
subquestions:

» What value of hit ratio is needed so that Ty = T?
¢ What size of M1 will assure the needed hit ratio?
* Does this size satisfy the cost requirement?

To get at this, consider the quantity T7/T;, which is referred to as the access efficiency.
It is a measure of how close average access time (7) is to M1 access time (T} ). From
Equation (4.1),

q (4.1) T )

e (4.3)
T, NG
L+ (1= HF

In Figure 4.19, we plot 7}/ as a function of the hit ratio H, with the quantity 75/T; as
a parameter. Typically, on-chip cache access time is about 25 to S0 times faster than
main memory access time (i.e., T5/T; is 5 to 10), off-chip cache access time is about 5
or 15 times faster than main memory access time (i.e., 75/T; is 5 to 15),” and main

’For example, at the time of this writing, for the Pentium 4, on-chip cache access time is 1 ns for
data cache. 2 ns for instruction cache, and 3.5 ns for L2 cache; main memory access time is 30 ns. For
the Itanium 2. on chip cache access time is 0.67 ns for L1 cache, 4 ns for L2 cache, and 8 ns for L3
cache is 8 ns.
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Figure 4.19  Access Efficiency as a Function of Hit Ratio (r = T/Ty)

memory access time is about 1000 times faster than disk access time (7,/T; = 1000).
Thus, a hit ratio in the range of near 0.9 would seem to be needed to satisfy the per-
formance requirement.

We can now phrase the question about relative memory size more exactly. Is a
hit ratio of, say, 0.8 or better reasonable for §; << S,? This will depend on a number of
factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 4.20 suggests the effect that locality has on the hit ratio. Clearly, if M1 is
the same size as M2, then the hit ratio will be 1.0: all of the items in M2 are always
stored also in M1. Now suppose that there is no locality; that is, references are
completely random. In that case the hit ratio should be a strictly linear function of the
relative memory size. For example, if M1 is half the size of M2, then at any time half of
the items from M2 are also in M1 and the hit ratio will be 0.5. In practice, however,
there is some degree of locality in the references. The effects of moderate and strong
locality are indicated in the figure.

So if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of main memory (e.g.,[AGAR89], [PRZY88], [STRES83], and [SMIT82]).
A cache in the range of 1K to 128K words is generally adequate, whereas main
memory is now typically in the gigabyte range. When we consider virtual memory
and disk cache, we will cite other studies that confirm the same phenomenon, name-
ly that a relatively small M1 yields a high value of hit ratio because of locality.
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This brings us to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per bit of the two levels of memory will approach that of the cheaper

lower-level memory.
Please note that with L2 cache, or even L2 and L3 caches, involved, analysis is

much more complex. See [PEIR99] and [HAND98] for discussions.
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KEY POINTS

¢ The two basic forms of semiconductor random access memory are
dynamic RAM (DRAM) and static RAM (SRAM). SRAM is faster, more
expensive, and less dense than DRAM and is used for cache memory.
DRAM is used for main memory. ’ T

¢ Error correction techniques are commonly used in memory systems.
These involve adding redundant bits that are a function of the data bits to
form an error-correcting code. If a bit error occurs, the code will detect
and, usually, correct the error. | ‘ :

¢ To compensate for the relatively slow speed of DRAM, a m
advanced DRAM organizations have been introduced. The ’ st
common are synchronous DRAM and RamBus DRAM. Both of these -
involve using the system clock to provide for the transfer of blocks
of data. L

This chapter begins with a survey of semiconductor main memory subsystems,
including ROM, DRAM, and SRAM memories. Then we look at error control tech-
niques used to enhance memory reliability. Following this, we look at more advanced
DRAM architectures.

5.1 SEMICONDUCTOR MAIN MEMORY

In earlier computers, the most common form of random-access storage for computer
main memory employed an array of doughnut-shaped ferromagnetic loops referred
to as cores. Hence, main memory was often referred to as core, a term that persists to
this day. The advent of, and advantages of, microelectronics has long since vanquished
the magnetic core memory. Today, the use of semiconductor chips for main memory
is almost universal. Key aspects of this technology are explored in this section.

Organization

The basic element of a semiconductor memory is the memory cell. Although a variety
of electronic technologies are used, all semiconductor memory cells share certain
properties:

* They exhibit two stable (or semistable) states, which can be used to represent
binary 1 and 0.

* They are capable of being written into (at least once), to set the state.

* They are capable of being read to sense the state.
Figure 5.1 depicts the operation of a memory cell. Most commonly, the cell has

three functional terminals capable of carrying an electrical signal. The select terminal,
as the name suggests, selects a memory cell for a read or write operation. The control
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Control Control
Select Data in Select Sense
—1 Cell —>  Cell
(a) Write (b) Read

Figure 5.1 Memory Cell Operation

terminal indicates read or write. For writing, the other terminal provides an electrical
signal that sets the state of the cell to 1 or 0. For reading, that terminal is used for out-
put of the cell’s state. The details of the internal organization, functioning, and timing
of the memory cell depend on the specific integrated circuit technology used and are
beyond the scope of this book, except for a brief summary. For our purposes, we will
take it as given that individual cells can be selected for reading and writing operations.

DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That is,
individual words of memory are directly accessed through wired-in addressing logic.

Table 5.1 lists the major types of semiconductor memory. The most common is
referred to as random-access memory (RAM). This is, of course, a misuse of the
term, because all of the types listed in the table are random access. One distinguish-
ing characteristic of RAM is that it is possible both to read data from the memory
and to write new data into the memory easily and rapidly. Both the reading and
writing are accomplished through the use of electrical signals.

The other distinguishing characteristic of RAM is that it is volatile. A RAM
must be provided with a constant power supply. If the power is interrupted, then the

Table 5.1 Semiconductor Memory Types

Memory Type Category Erasure Write Mechanism | Volatility
Random-access Read-write memory | Electrically, byte-level Electrically Volatile
Readonty '~ | Masks
memory (ROM)
Read-only memory Not possible
ROM (PROM)
Erasable PROM . : . . . Nonvolatile
(EPROM) UV light, chip-level Electrically
Electrically Erasable | Read-mostly memory Electrically, byte-level
‘PROM (EEPROM)
Flash memory Electrically, block-level
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data are lost. Thus, RAM can be used only as temporary storage. The two traditional
forms of RAM used in computers are DRAM and SRAM.

Dynamic RAM RAM technology is divided into two technologies: dynamic and
static. A dynamic RAM (DRAM) is made with cells that store data as charge on
capacitors. The presence or absence of charge in a capacitor is interpreted as a binary
1 or 0. Because capacitors have a natural tendency to discharge, dynamic RAMs
require periodic charge refreshing to maintain data storage. The term dynamic refers to
this tendency of the stored charge to leak away, even with power continuously applied.

Figure 5.2a is a typical DRAM structure for an individual cell that stores one
bit. The address line is activated when the bit value from this cell is to be read or
written. The transistor acts as a switch that is closed (allowing current to flow) if a
voltage is applied to the address line and open (no current flows) if no voltage is
present on the address line.

For the write operation, a voltage signal is applied to the bit line; a high voltage
represents 1, and a low voltage represents 0. A signal is then applied to the address
line, allowing a charge to be transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns
on and the charge stored on the capacitor is fed out onto a bit line and to a sense
amplifier. The sense amplifier compares the capacitor voltage to a reference value
and determines if the cell contains a logic 1 or a logic 0. The readout from the cell
discharges the capacitor, which must be restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially
an analog device. The capacitor can store any charge value within a range; a thresh-
old value determines whether the charge is interpreted as 1 or 0.

dc voltage

)\

Address line T‘] F— ‘4 T,

T; Cl Cz T6

Bit line
B

Transistor o_—l__'_o\ / ’—\_1—0
T 4><» T

Storage L
capacitor — [

Ground T

Bit line
B

Bit line

Address B

line

(a) Dynamic RAM (DRAM) cell (b) Static RAM (SRAM) cell

Figure 5.2 Typical Memory Cell Structures
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Static RAM In contrast, a static RAM (SRAM) is a digital device, using the same
logic elements used in the processor. In a SRAM, binary values are stored using
traditional flip-flop logic-gate configurations (see Appendix B for a description of
flip-flops). A static RAM will hold its data as long as power is supplied to it.

Figure 5.2b is a typical SRAM structure for an individual cell. Four transis-
tors (Ty, Ty, T3, T4) are cross connected in an arrangement that produces a stable
logic state. In logic state 1, point Cy is high and point C;, is low; in this state, T, and
T, are off and T, and T; are on.! In logic state 0, point C; is low and point C, is
high; in this state, T; and T4 are on and T, and Tj; are off. Both states are stable as
long as the direct current (dc) voltage is applied. Unlike the DRAM, no refresh is
needed to retain data.

As in the DRAM, the SRAM address line is used to open or close a switch.
The address line controls two transistors (Ts and Tg). When a signal is applied to this
line, the two transistors are switch on, allowing a read or write operation. For a write
operation, the desired bit value is applied to line B, while its complement is applied to
line B. This forces the four transistors (T, T,, T3, T4) into the proper state. For a read
operation, the bit value is read from line B.

SRAM versus DRAM Both static and dynamic RAMs are volatile; that is, power
must be continuously supplied to the memory to preserve the bit values. A dynamic
memory cell is simpler and smaller than a static memory cell. Thus,a DRAM is more
dense (smaller cells = more cells per unit area) and less expensive than a correspond-
ing SRAM. On the other hand, a DRAM requires the supporting refresh circuitry. For
larger memories, the fixed cost of the refresh circuitry is more than compensated for by
the smaller variable cost of DRAM cells. Thus, DRAMs tend to be favored for large
memory requirements. A final point is that SRAMs are generally somewhat faster than
DRAMs. Because of these relative characteristics, SRAM is used for cache memory
(both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern of
data that cannot be changed. A ROM is nonvolatile; that is, no power source is
required to maintain the bit values in memory. While it is possible to read a ROM, it
is not possible to write new data into it. An important application of ROMs is
microprogramming, discussed in Part Four. Other potential applications include

* Library subroutines for frequently wanted functions

¢ System programs

e Function tables
For a modest-sized requirement, the advantage of ROM is that the data or pro-
gram is permanently in main memory and need never be loaded from a secondary
storage device.

A ROM is created like any other integrated circuit chip, with the data actually
wired into the chip as part of the fabrication process. This presents two problems:

'The circles at the head of T; and T indicate signal negation.
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* The data insertion step includes a relatively large fixed cost, whether one or
thousands of copies of a particular ROM are fabricated.

* There is no room for error. If one bit is wrong, the whole batch of ROMs must
be thrown out.

When only a small number of ROMs with a particular memory content is
needed, a less expensive alternative is the programmable ROM (PROM). Like the
ROM, the PROM is nonvolatile and may be written into only once. For the
PROM, the writing process is performed electrically and may be performed by a
supplier or customer at a time later than the original chip fabrication. Special
equipment is required for the writing or “programming” process. PROMs provide
flexibility and convenience. The ROM remains attractive for high-volume produc-
tion runs.

Another variation on read-only memory is the read-mostly memory, which is
useful for applications in which read operations are far more frequent than write
operations but for which nonvolatile storage is required. There are three common
forms of read-mostly memory: EPROM, EEPROM, and flash memory.

The optically erasable programmable read-only memory (EPROM) is read
and written electrically, as with PROM. However, before a write operation, all the
storage cells must be erased to the same initial state by exposure of the packaged
chip to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet
light through a window that is designed into the memory chip. This erasure process
can be performed repeatedly; each erasure can take as much as 20 minutes to per-
form. Thus, the EPROM can be altered multiple times and, like the ROM and
PROM, holds its data virtually indefinitely. For comparable amounts of storage, the
EPROM is more expensive than PROM, but it has the advantage of the multiple
update capability.

A more attractive form of read-mostly memory is electrically erasable pro-
grammable read-only memory (EEPROM). This is a read-mostly memory that
can be written into at any time without erasing prior contents; only the byte or
bytes addressed are updated. The write operation takes considerably longer
than the read operation, on the order of several hundred microseconds per byte.
The EEPROM combines the advantage of nonvolatility with the flexibility of
being updatable in place, using ordinary bus control, address, and data lines.
EEPROM is more expensive than EPROM and also is less dense, supporting
fewer bits per chip.

Another form of semiconductor memory is flash memory (so named because
of the speed with which it can be reprogrammed). First introduced in the mid-1980s,
flash memory is intermediate between EPROM and EEPROM in both cost and
functionality. Like EEPROM., flash memory uses an electrical erasing technology.
An entire flash memory can be erased in one or a few seconds, which is much faster
than EPROM. In addition, it is possible to erase just blocks of memory rather than
an entire chip. Flash memory gets its name because the microchip is organized so
that a section of memory cells are erased in a single action or “flash.” However,
flash memory does not provide byte-level erasure. Like EPROM, flash memory
uses only one transistor per bit, and so achieves the high density (compared with
EEPROM) of EPROM.
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Chip Logic

As with other integrated circuit products, semiconductor memory comes in pack-
aged chips (Figure 2.7). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among
speed, capacity, and cost. These trade-offs also exist when we consider the organization
of memory cells and functional logic on a chip. For semiconductor memories, one of the
key design issues is the number of bits of data that may be read/written at a time. At one
extreme is an organization in which the physical arrangement of cells in the array is the
same as the logical arrangement (as perceived by the processor) of words in memory.
The array is organized into W words of B bits each. For example, a 16-Mbit chip could
be organized as 1M 16-bit words. At the other extreme is the so-called one-bit-per-chip
organization, in which data is read/written one bit at a time. We will illustrate memory
chip organization with a DRAM; ROM organization is similar, though simpler.

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits
are read or written at a time. Logically, the memory array is organized as four square
arrays of 2048 by 2048 elements. Various physical arrangements are possible. In any
case, the elements of the array are connected by both horizontal (row) and vertical
(column) lines. Each horizontal line connects to the Select terminal of each cell in its
row; each vertical line connects to the Data-In/Sense terminal of each cell in its column.

Address lines supply the address of the word to be selected. A total of log, W
lines are needed. In our example, 11 address lines are needed to select one of 2048
rows. These 11 lines are fed into a row decoder, which has 11 lines of input and 2048
lines for output. The logic of the decoder activates a single one of the 2048 outputs
depending on the bit pattern on the 11 input lines (2!! = 2048).

An additional 11 address lines select one of 2048 columns of 4 bits per column.
Four data lines are used for the input and output of 4 bits to and from a data buffer.
On input (write), the bit driver of each bit line is activated for a 1 or 0 according to
the value of the corresponding data line. On output (read), the value of each bit line
is passed through a sense amplifier and presented to the data lines. The row line
selects which row of cells is used for reading or writing,

Because only 4 bits are read/written to this DRAM, there must be multiple
DRAMs connected to the memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0-A10), half the number you wouid
expect for a 2048 X 2048 array. This is done to save on the number of pins. The 22
required address lines are passed through select logic external to the chip and multi-
plexed onto the 11 address lines. First, 11 address signals are passed to the chip to
define the row address of the array, and then the other 11 address signals are pre-
sented for the column address. These signals are accompanied by row address select
(RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether a
write or read operation is performed. Two other pins, not shown in Figure 5.3, are
ground (V) and a voltage source (V).

As an aside, multiplexed addressing plus the use of square arrays result in a
quadrupling of memory size with each new generation of memory chips. One more
pin devoted to addressing doubles the number of rows and columns, and so the size
of the chip memory grows by a factor of 4.




